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Abstract. Density functional theory, modified to include spin–orbit coupling and an effective
orbital field to simulate Hund’s second rule, is applied to investigate the magnetic structure
and electronic properties of the compound UPdSn. Our theoretical results are in overall good
agreement with experiment. Thus both theory and experiment find the magnetic structure of
UPdSn to be noncollinear, the calculated magnetic U-moments being in very good agreement
with the measurements. Also, the calculated density of states is found to simulate closely the
photoemission spectrum and the very low experimental value of 5 mJ mol−1 K−2 for the specific
heatγ is reproduced reasonably well by the calculated value of 7.5 mJ mol−1 K−2. Furthermore,
the interconnection of the magnetic structure with the crystal structure is investigated. Here
theory and experiment agree concerning the planar noncollinear antiferromagnetic configuration
in the orthorhombic crystal structure and for the monoclinically distorted lattice we obtain
deviations of the magnetic moments from the plane which, although qualitatively in agreement
with the experimentally observed deviations, are smaller than the latter. We carry out a symmetry
analysis and show that UPdSn belongs to the class of systems possessing a magnetic structure,
the noncollinearity of which is predetermined by symmetry. Conclusions are drawn about the
itinerant character of the U 5f electrons.

1. Introduction

In the last years UPdSn has been extensively studied experimentally revealing a number
of interesting physical properties [1–7]. The main attention has focused on two magnetic
phase transitions which were found to be accompanied by lattice distortions. Thus, the
paramagnetic state has the GaGeLi hexagonal crystal lattice. Below 45 K UPdSn becomes
magnetic with a noncollinear antiferromagnetic structure. In this phase (which we will
refer to as structure I) all magnetic moments of the uranium atoms lie parallel to a plane
and compensate one another completely. Simultaneously orthorhombic lattice distortions
are detected. At 20 K a second phase transition is observed. Here the magnetic structure
(structure II) is still noncollinear and compensated; however, the magnetic moments deviate
from the plane, developing components perpendicular to it. Noncollinear magnetic structures
have been observed in a number of different uranium compounds (see, e.g., [8–10]) and they
seem to be quite common for this class of materials. Recently, we have therefore studied
such structures in U3P4 [11, 12], U2Pd2Sn [11, 12], U3As4 and U3Sb4 [13] and found that
two different types of noncollinearity must be distinguished. Simplifying somewhat, we may
refer to them asaccidental noncollinearityandsymmetry predetermined noncollinearity. In
the first case (e.g. U2Pd2Sn [11, 12]) there are a number of structures, both collinear and
noncollinear, which are distinguished by additional symmetry, i.e. at least one symmetry
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element will be lost with any deviation of the magnetic moments. This additional symmetry
leads to a local extremum of the total energy for these structures, which in this sense
are quasi-stable. Which of the magnetic structures possesses the lowest energy depends
on a cumbersome competition of different interactions. In the second case (e.g. U3X4

compounds) the collinear structure is not distinguished by symmetry from the structures
obtained from it by an infinitesimal rotation of magnetic moments, and therefore it does not
possess an extremum of the total energy that is caused by the symmetry of the problem. In
other words, the collinear magnetic structure has exactly the same symmetry properties as
the canted noncollinear structures obtained by infinitesimal rotations of the atomic moments.
Because the probability of the minimum of the total energy being assumed by the collinear
structure is negligible, canting is the inevitable consequence. We have shown that in the
formation of the second type of noncollinearity a crucial role is played by the relativistic
spin–orbit coupling, which influences the symmetry properties of the physical system in an
important way.

The complex antiferromagnetic noncollinear structures observed in UPdSn, as well as
an interesting relation which exists between the magnetic structure and the lattice distortion,
make this compound very attractive for the continuation of our studies of the magnetic
ordering in U compounds.

Another interesting aspect of the physics of the UPdSn compound is the controversial
nature of the 5f electrons. On the one hand, the very low specific heatγ value detected
experimentally [2] can be treated as a sign of the highly localized nature of the 5f
electrons in this compound [2, 7]. On the other hand, in photoemission experiments [4]
the 5f states were observed to lie close to the Fermi level in apparent contradiction to
the low γ value. The nature of the 5f electron states in UPdSn was discussed by Trygg
et al [14] who, to our knowledge, reported the only band structure calculation of this
compound. Their study was carried out for an assumed collinear ferromagnetic phase
under two different kinds of assumptions. First, the 5f electrons were treated as itinerant
valence electrons and, second, as localized core electrons. Accounting for the effective
orbital field simulating Hund’s second rule allowed these authors to obtain good agreement
between the theoretical magnetic moment formed by the itinerant 5f electrons and the
experimental uranium magnetic moment. However, the lowγ value and the results of the
photoemission experiment could not be satisfactorily explained in the itinerant picture for
the 5f electrons. Although the treatment of the 5f electrons as localized resulted also in
a number of discrepancies between calculation and experiment, Trygget al concluded in
favour of the localized nature of the U 5f electrons in UPdSn.

The essential difference between the noncollinear antiferromagnetic structures observed
experimentally and the collinear ferromagnetic structure assumed by Trygget al [14]
demands further theoretical study of the UPdSn compound. In the present paper we report
calculations of the antiferromagnetic noncollinear states in UPdSn.

In the following section we give a brief description of the Hamiltonian employed
in the calculations discussing the crystal structure and calculational parameters. Next
we report results for the magnetic structure calculated self-consistently in the undistorted
crystal lattice of the paramagnetic state as well as for the lattices with orthorhombic and
monoclinic distortions. We carry out a symmetry analysis and stress that we find in all three
cases noncollinear magnetic structures that are predetermined by symmetry. We compare
the calculated and experimental magnetic structures and discuss the electron density of
states (DOS), comparing it with the experimental photoemission spectrum [4] and with the
experimental estimate for the electronic heat capacityγ value [2]. In summarizing we draw
our conclusions concerning the itinerant nature of the U 5f electrons in this compound.
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2. Hamiltonian

The Hamiltonian of the problem employed in the present studies is identical to the
Hamiltonian used in our previous investigations of U compounds possessing noncollinear
magnetic structures [11–13]. It contains three terms: the scalar-relativistic Hamiltonian,
the spin–orbit coupling (SOC) term and an effective orbital field term, the latter of which
simulates the effect of Hund’s second rule. To make the paper self-contained we describe
briefly the Hamiltonian as well as the calculational scheme.

The scalar-relativistic Hamiltonian is given by

Ĥsc(aν, eν) =
∑
ν

U+(θν, φν)
(
H
ν↑
sc (rν) 0

0 H
ν↓
sc (rν)

)
U(θν, φν). (1)

Here U(θν, φν) is the standard spin-1
2-rotation matrix which describes the transformation

between a global and a local coordinate system of theνth atom whose spin orientation
is given by the polar anglesθν and φν with respect to thez-axis of the global system.
H
ν↑
sc (rν) andHν↓

sc (rν) are the standard atomic scalar-relativistic Hamiltonians (spin up, spin
down) [15] in the local frame of reference for the atom at siteν. They contain the mass
velocity, the Darwin term and the effective one-particle potential which, as usual, is given
by functional derivatives of the total energy and is spin-diagonal in the local frame of this
atom.

The second term of the Hamiltonian

Ĥso(aν, eν) =
∑
ν

U+(θν, φν)
{∑

α

Mανσαν l̂αν

}
U(θν, φν) (2)

accounts for the SOC; its inclusion renders the Hamiltonian fully relativistic. Hereσαν and
l̂αν are the Cartesian components of the Pauli spin matrices and the angular momentum
operator, respectively, in the local system of theνth atom and the coefficientsM can be
found in [16]. Variables of the Hamiltonians are the positions of the atomsaν and the
directions of the atomic spin momentseν . The latter are obtained by recomputing and
diagonalizing in each iteration step the two-dimensional spin-density matrix [17]; it is this
quantity that must be diagonal in the local coordinate system thus giving self-consistent
anglesθν andφν , and a minimum of the total energy.

Not only the spin moment but also the orbital moment is treated as a three-dimensional
vector. For theνth atom the latter is obtained directly as a sum over occupied electron
states of expectation values of the angular momentum operatorl̂α:

Lνα =
∑
kn,occ

∫
�ν

ψn+k (r)l̂αψ
n
k(r) dr α = x, y, z (3)

wheren is the band index and the integration is carried out over theνth atomic sphere. For
the special case when the atomic moments are parallel to the globalz-axis, an expression
for the z-component of the orbital moment can easily be derived from equation (4) that
agrees with that given in [18].

Following the work of Erikssonet al [19] we add the following term to the Hamiltonian
of the problem

Ĥorb = IorbLzl̂zν (4)

which takes into account interactions responsible for Hund’s second rule. HereLz is the
projection of the atomic orbital moment onto the local atomicz-axis. The parameterIorb
was taken to equal 2.6 mRyd [19]. The actual numerical calculations are performed with
the augmented spherical wave (ASW) method [20].
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3. Crystal structure and calculational parameters

Paramagnetic UPdSn crystallizes in the hexagonal GaGeLi-type structure. The uranium
atoms lie on a simple hexagonal lattice with two uranium layers per crystallographic unit
cell. The coordinates of the atoms and the lattice parameters are collected in table 1.

Table 1. Crystal structure parameters of the orthorhombic UPdSn.

Lattice constants a = 4.600 Å b/a = 1.732 05 c/a = 1.584 64

U(1) 0 0 1
4

U(2) 0 0 3
4

U(3) 1
2

1
2

1
4

U(4) 1
2

1
2

3
4

Pd(1) 1
2

1
6 0.923

Pd(2) 0 1
3 0.423

Pd(3) 1
2

5
6 0.423

Pd(4) 0 2
3 0.923

Sn(1) 1
2

1
6 0.521

Sn(2) 0 1
3 0.021

Sn(3) 1
2

5
6 0.021

Sn(4) 0 2
3 0.521

Atomic radii R(U) = 1.895 Å R(Pd) = 1.571 Å R(Sn) = 1.740 Å

A planar noncollinear antiferromagnetic structure (labelled I), see figures 1(a) and 1(b),
observed below 45 K has an orthorhombic magnetic unit cell withb = √3a [1]. The
magnetic unit cell is two times larger than the crystallographic hexagonal unit cell. In a later
experiment [5] an orthorhombic distortion of the crystal lattice accompanying the magnetic
phase transition was observed, i.e. the value ofb was found to deviate somewhat from

√
3a.

In the magnetic structure (labelled II) observed below 20 K the magnetic moments rotate
out of theyz-plane keeping, however, the structure compensated (figure 1(c)). This phase
transition was found to be accompanied by monoclinic lattice distortions (see figure 1(c)).

Note that in a recent paper of Trocet al [7] on UPdSn these authors obtained results
which are, in general, very similar to the results of previous investigations, but due to a
different interpretation of the data they concluded that UPdSn possesses more complicated
magnetic structures with a larger magnetic unit cell than the structures suggested in [1, 5].
Because Trocet al do not elaborate the magnetic structure any further, in the present paper
we are guided by the experimental conclusions drawn in [1, 5].

4. Calculational results and discussion

4.1. Calculation of the magnetic structure

We start our calculations with the undistorted hexagonal lattice having initially all uranium
magnetic moments directed along thez-axis and forming a collinear antiferromagnetic
structure (see figure 1(a)) with an orthorhombic magnetic unit cell. Subsequently, allowing
the moments to rotate, they deviated immediately from thez-axis keeping, however, their
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Figure 1. Projections of the crystal and magnetic structure onto thexy- and yz-planes.
(a) Projection of the orthorhombic unit cell onto theyz-plane. Dotted arrows show the initial
magnetic structure used to start the calculation, thick arrows show the resulting self-consistent
directions of the magnetic moments. Thin arrows show the experimental magnetic structure [1].
(b) Projection of the orthorhombic unit cell onto thexy-plane. Both experimental and theoretical
projections of the magnetic moments are parallel to they-axis. (c) Projection of the monoclinic
unit cell onto thexy-plane. Arrows show schematically the deviations of the magnetic moments
from theyz-plane.

equivalence and the compensated character of the magnetic structure. The resulting self-
consistent directions of the magnetic moments are shown in figure 1(a); they form a magnetic
structure which is very similar to the experimental structure I. The following symmetry
principle, formulated by us in previous studies of complex magnetic structures [13, 21, 22],
helps us to expose the physical reasons for the instability of the initial collinear structure.If
a deviation of the magnetic moments from their initial directions destroys the invariance of
the Kohn–Sham Hamiltonian with respect to at least one symmetry operation, this deviation
cannot take place. Oppositely, if a deviation of the magnetic moments does not destroy
any symmetry operation this deviation must take place. In the latter case we deal with a
noncollinearity of the magnetic structure that is predetermined by symmetry.

To apply the symmetry principle to our problem we begin with a symmetry analysis of
the initial collinear antiferromagnetic structure. We will consider two types of symmetry
transformations: unitary transformations which do not contain time reversal and anti-
unitary transformations which are products of a unitary transformation with the time-
reversal operation. The system at hand possesses four unitary symmetry transformations
and four anti-unitary transformations which are collected in table 2. Note that the vector
τ 2 = 1

2(a, b,0) is a lattice translation of the hexagonal chemical lattice, which in the
magnetic case must be accompanied by time reversal to be a symmetry operator (operator
5 in table 2).

The following symmetry property of the initial collinear structure is important for us: all
non-trivial unitary transformations, 2 to 4, and three of the four non-unitary transformations,
5, 6 and 8, do not leave the atomic positions unchanged and transfer every atom into the
position of another atom. Simultaneously, the moment of the atom is transformed to assume
a direction corresponding to the new atomic position. Therefore, these operations do not
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Table 2. Symmetry properties of the orthorhombic UPdSn.ε =
 1

1
1

; C2z =−1
−1

1

; σx =
−1

1
1

; σy =
 1

−1
1

. τ 1 = 1
2(a, b, c); τ 2 =

1
2(a, b,0); τ 3 = 1

2(0, 0, c). R represents the time reversal operation.

Operation Transposition of U atoms Restriction on U moments

1 {ε|0} No No

2 {C2z|τ 1} 1↔ 4; 2↔ 3

mxmy
mz


i

=
−mx−my
mz


j

; i ↔ j

3 {σx |τ 2} 1↔ 3; 2↔ 4

mxmy
mz


i

=
 mx
−my
−mz


j

; i ↔ j

4 {σy |τ 3} 1↔ 4; 2↔ 3

mxmy
mz


i

=
−mxmy
−mz


j

; i ↔ j

5 {ε|τ 2}R 1↔ 3; 2↔ 4 mi = −mj ; i ↔ j

6 {C2z|τ 3}R 1↔ 2; 3↔ 4

mxmy
mz


i

=
 mx
my
−mz


j

; i ↔ j

7 {σx |0}R No mx = 0; all i

8 {σy |τ 1}R 1↔ 4; 2↔ 3

mxmy
mz


i

=
 mx
−my
mz


j

; i ↔ j

impose any restrictions on the directions of particular atomic moments but only on their
relative directions. These restricting relations are collected in the last column of table 2.

The only non-trivial symmetry operation which keeps atoms in their initial positions
is the anti-unitary transformation 7. This symmetry operation requires the condition
mix=0 for each atomi. Because of this the restrictions on the relative directions of the
atomic moments resulting from the other symmetry operations take the following form:
m1
y = m2

y = −m3
y = −m4

y andm1
z = −m2

z = m3
z = −m4

z . This means that the initial
collinear structure has the same symmetry as the noncollinear structures satisfying these
relations. The noncollinear magnetic structure detected experimentally belongs to this type
of structures. Thus, according to the symmetry principle, the realization of an extremum of
the total energy by the collinear structure is improbable and hence the moments will deviate
from collinearity. The details of this deviation can only be ascertained by self-consistent
calculations which establish the minimum of the total energy. To further expose the origin
of the noncollinearity we must uncover which physical interactions determine the decisive
symmetry property. One of these interactions is the SOC. As was shown earlier [21, 22],
in absence of the SOC any collinear magnetic structure is quasi-stable. The reason for this
is that the symmetry of the non-relativistic Hamiltonian must be treated on the basis of the
generalized spin-space groups which are essentially different from the usual space groups
used in the relativistic case.

Another important feature which contributes decisively to the formation of the
noncollinearity is the influence of the Pd and Sn atoms. Numerical experiments with only
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the U atoms taken into consideration have shown that the initial collinear structure becomes
stable in this case. Again this property is easy to understand if one notices that the U atoms
form a simple hexagonal lattice which has a higher symmetry than the GaGeLi structure.
As a result, the collinear antiferromagnetic structure possesses a symmetry operationC2z

(see table 2) without any accompanying non-primitive translation. This symmetry operation
demands thatmix = 0 andmiy = 0 for any atomi. To preserve this symmetry the collinear
structure must be kept unchanged. Thus, in the presence of SOC it is the influence of the
Pd and Sn atoms that forces the U moments to become noncollinear.

Next we study the influence of lattice distortions on the magnetic structure. We start
with the orthorhombic distortions which were observed to accompany the magnetic structure
I. Following the experiment [5], we introduce a small variation of the lattice parameters
a and b such that the relationb = √3a valid for the ideal hexagonal lattice is no longer
satisfied. This distortion does not affect the symmetry of the system because the magnetic
structure has already lowered the symmetry of the crystal from hexagonal to orthorhombic.
As a result no qualitative changes of the magnetic structure were observed due to the
orthorhombic lattice distortion and quantitative changes also appeared to be very small.
The magnetic structure is very close to the structure shown in figure 1(a) and is still in good
agreement with the experimental structure I.

A basically different response was obtained to the monoclinic distortions. In agreement
with experiment theb-side of the basal rectangle (figure 1) was rotated by 0.4◦ about the
c-axis. We start the calculations with the magnetic structure I. Already after the first iteration
all uranium magnetic moments deviated from theyz-plane, staying, however, mutually
equivalent and compensating the magnetic structure.

Again, a symmetry analysis helps us to understand this process. The monoclinic
distortion decreases the symmetry of the system, such that from the eight operations of
the orthorhombic structure only four are left over in this case. These are the operations
numbered in table 2 as 1, 2, 5 and 6. Operation 5 demands equivalence of atom 1 to atom
3 and atom 2 to atom 4. Simultaneously, the moments of the equivalent atoms must be
antiparallel:m1 = −m3 andm2 = −m4. Operation 2 is responsible for the equivalence
of atoms 1 and 4 and the following relation between the components of the magnetic
moments:m1

x = −m4
x , m1

y = −m4
y , m1

z = m4
z . Further symmetry operations do not lead

to additional restrictions. Thus we see the important difference between the orthorhombic
and the monoclinic structures of UPdSn: in the monoclinic structure there is no symmetry
operation demanding that thex-component of the magnetic moments are zero. This means
that a deviation of the magnetic moments from theyz-plane does not change the symmetry
of the system and therefore such a deviation will take place according to our symmetry
principle. Thus the result of the calculation for the monoclinically distorted lattice and the
corresponding symmetry analysis are in qualitative agreement with the experimental data.
However, quantitatively there is a large difference between the calculated and experimental
parameters of the magnetic configuration. Moreover, experimentally themx component of
the atomic moments is found to be close to the value of themy components, i.e. the rotation
of the magnetic moments out of theyz-plane is about 45◦. Our calculation gives a much
smaller rotation value of 1.3◦ for the experimental lattice distortion. To study the sensitivity
of the out-of-plane rotation to the value of the monoclinic distortion, we carried out a
numerical experiment and calculated the magnetic structure for a number of distortions,
with distortion angle up to 2◦. We found the value of the deviation of the moments out
of the yz-plane to be practically proportional to the monoclinic distortion. At present we
have no explanation for the difference between the experimental and theoretical estimates of
the value of the out-of-plane rotation of the U moments. This difference could perhaps be



4904 L M Sandratskii and J K¨ubler

related to the assumption of Trocet al [7] that a larger magnetic unit cell must be taken into
account. However, at present there is no information on which kind of magnetic structure
it could be and how this hypothetical structure will react to monoclinic distortions.

Note that, in qualitative agreement with experiment, we obtained a high stability of the
polar angleθ . For both, orthorhombic and monoclinic, experimental lattice distortions the
change in the angle did not exceed 0.05◦, in comparison with 1.3◦ for the variation of the
angleφ in the monoclinically distorted lattice.

Summarizing our study of the magnetic structures, we conclude that the two types of
lattice distortions observed experimentally have very different properties. On the one hand,
the orthorhombic distortion does not lower the symmetry of the undistorted magnetic crystal.
This distortion can be treated as an inevitable adjustment of the lattice to the magnetic
structure. Orthorhombic relaxation of the lattice brings the symmetry of the atomic positions
into agreement with the symmetry of the system as a whole. Our calculation shows that
this distortion is not important for establishing the magnetic structure: only small variations
of the lengths and angles of the moments are obtained due to this distortion.

On the other hand, the second type of distortion having monoclinic symmetry decreases
the symmetry of the crystal. The same decrease of the symmetry is connected with the
deviation of the atomic moments from theyz-plane and the appearance of themx component.
Appearance of one of these effects immediately enforces the other.

This connection makes the question a difficult one concerning the primary agent: is
the symmetry decrease due to the lattice or the magnetism? To answer this question at
least partially we carried out the following numerical experiment: we started a calculation
assuming the noncollinear magnetic structure II, however, without the monoclinic distortion.
The result was that the magnetic structure relaxes to the planar structure I, i.e. in our
calculations the structure II appeared to be unstable in the absence of the monoclinic
distortions. In principle, density functional theory allows us to estimate the energy change
related to a lattice distortion, a calculation that should be done next. However, to be reliable
such a calculation must be full potential, i.e. no approximation to the form of the potential
can be used. Our present calculations are based on the atomic sphere approximation (ASA)
[20] which does not permit a sufficiently reliable estimate of the energy change due to
atomic displacements.

Up until now only the directions of the magnetic moments have been discussed. Turning,
therefore, next to the discussion of the magnitude of the moments, we note that in the
case of U there are two contributions: the spin and orbital moments. For collinear
magnetic structures both atomic moments are antiparallel [23, 24]. Recent investigations
[13, 21, 25, 26] have shown, however, that in general the spin and orbital moments of the
same atom are noncollinear. For instance, for any noncollinear magnetic structure where the
noncollinearity is predetermined by symmetry, the spin and orbital moments of individual
atoms must also be noncollinear. Symmetry arguments supporting this statement have been
given in [13]. The intra-atomic noncollinearity of the orbital and spin moments is a result
of the different influence of the crystal environment on both moments.

It is therefore not surprising that also in the case of UPdSn we find the spin and orbital
moments to be noncollinear. However, because of the strong intra-atomic SOC tending to
direct both moments antiparallel, the noncollinearity of the spin and orbital moments of the
U atom in this compound is very weak and assumes in both magnetic structures, I and II,
a value of about 1◦. So, qualitatively, the two atomic moments can be thought of as being
antiparallel.

The values of the moments do not change noticeably upon introduction of the lattice
distortions. In all cases studied by us the length of the spin moment amounts to 2.23µB ,
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the length of the orbital moment to 4.24µB and the length of the summed atomic moment
is 2.01µB . This value is in very good agreement with the experimental estimate of 2.05µB
[1].

It is of interest to comment briefly on the magnetic moments induced on the Pd and
Sn atoms, even though they are small. First, in all cases studied the atoms of the same
kind stayed equivalent. Second, similar to the U atoms the moments of Pd and Sn formed
noncollinear compensated magnetic configurations, which were planar for structure I and
with a finite mx component of atomic moments for structure II. Because the Pd and Sn
atoms are influenced by various U atoms with different directions of magnetic moments,
the directions of the induced moments of these atoms differ from the directions of the U
moments. For example, the angles between the Sn and the U moments reach a value of
several tens of degrees. The magnitudes of the induced moments amount to 0.04µB for
Pd and to 0.02µB for Sn. Again, the induced spin and orbital moments of Pd and Sn are
noncollinear, the angles between the two atomic moments reaching in this case values of
up to several tens of degrees.

4.2. Density of states

We show in figure 2 the total and partial density of states calculated for the magnetic
structure I in the undistorted hexagonal crystal lattice. Both orthorhombic and monoclinic
distortions result in only minute changes in the DOS. The general structure of the DOS
can be described as follows. The large peak at the bottom of the valence band in the
energy interval from about−0.35 to about−0.15 Ryd is formed by predominantly the Pd
4d states, and the next large group of peaks from−0.15 up to 0.15 Ryd by the U 5f states.
Simultaneously, a noticeable hybridization of the U 5f, U 6d, Pd 4d and Sn 5p is observed.
This hybridization is reflected in the common fine structure of the different partial DOS.

A remarkable feature of the DOS is a local minimum at the Fermi energy. Numerical
experiments show that this minimum is a result of the combined influence of the magnetism,
SOC, effective orbital field and hybridization of different states. Exclusion of at least one
of these components results in a sharp increase of the DOS at the Fermi energy. Obtaining
the specific heatγ value from the calculated DOS at the Fermi energy, we estimate a low
value of 7.5 mJ mol−1 K−2 which is of the same order as the experimental estimate of
5 mJ mol−1 K−2.

In figure 3 we compare the theoretical DOS with an experimental photoemission curve
[4]. Both curves are in rather good agreement concerning the positions of two maxima at
about−3.5 and 0.5 eV and the minimum at about 2.0 eV. From an analysis of the partial
contributions to the DOS, it can be unambiguously established that the lower peak is formed
mainly by the Pd 5d states and the higher peak by the U 5f states.

Thus our calculations allow us to explain the apparent contradiction between a low
specific heatγ value and a large number of U 5f states close to the Fermi level observed
in the photoemission experiment: because of the rather low resolution of the photoemission
experiment the narrow minimum of the DOS at the Fermi energy, which determines the
small value of the specific heatγ , cannot be observed with this experiment.

We note that our calculation supplies a DOS which is in better agreement with the
photoemission experiment than the DOS of Trygget al [14] which was also obtained in
the itinerant-electron picture for the 5f electrons. Here we believe the following features
of the calculations are important. First, Trygget al performed their calculation for an
assumed collinear ferromagnetic structure which differs considerably from the experimental
noncollinear antiferromagnetic structure. Second, the DOS used in [14] for comparison with
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Figure 2. Total and partial densities of states of UPdSn.

experiment was calculated without the effective orbital field, although the corresponding
term was used by the authors to improve the agreement with the experimental value of the
atomic moment. Our calculation shows that changes in the DOS caused by this term can
be important.

5. Conclusions

Summarizing, we applied the local density approximation to density functional theory to
investigate the magnetic structure and electronic properties of the compound UPdSn. Our
calculation technique is modified to include the SOC and effective orbital field which
simulates Hund’s second rule. In general, the agreement is good between the theoretical
picture and the experimental results: first, the calculated magnitude of the U magnetic
moment is very close to the experimental value; second, theory and experiment are in
agreement concerning the directions of the magnetic moments in the orthorhombic structure
I; third, for the monoclinic structure II both our calculations and experiment reveal a
direct connection between the monoclinic lattice distortions and the out-of-plane rotation
of the U magnetic moments, although the theoretical value of the rotation is much smaller
than the experimental estimate; fourth, the theoretical DOS is in good agreement with the
experimental photoemission spectrum; fifth, both theory and experiment result in a small
value of the specific heatγ .

We have shown that the magnetic structure of UPdSn belongs to the class of magnetic
crystals with noncollinearity of magnetic moments which is predetermined by the symmetry
of the problem. In other words, the magnetic structure of this compound must be
noncollinear. We suggest an explanation for the apparent contradiction between the low
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Figure 3. Comparison of the experimental photoemission spectrum [4] with the calculated DOS.
The theoretical curve is smoothed by 0.4 eV to take into account limited instrumental resolution
and finite lifetime effects.

specific heatγ value and the large number of the U 5f states close to the Fermi level
observed in the photoemission experiment.

On the basis of the good agreement between theory and experiment we conclude that
the 5f electrons in UPdSn are itinerant.
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1995J. Magn. Magn. Mater.151 102
[8] Purwanto A, Robinson R A, Havela L, Sechovsky V, Svoboda P, Nakotte H, Prokes K, de Boer F R, Seret A,

Winand J M, Rebizant J and Spirlet J C 1994Phys. Rev.50 6792
[9] Henkie Z, Johanson W R, Arko A J, Crabtree G W and Bazan C, 1983Phys. Rev.28 4198

[10] Lander G H and Burlet P 1995PhysicaB 215 7
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